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SUMMARY 

In strip theory analysis the vessel is represented by a series of 2D transverse sections. For 2D arbitrary-shaped 
sections either floating in the free surface or totally submerged, a higher-order boundary element analysis 
has been developed to permit determination of the associated radiation and diffraction velocity potentials. 

In this paper the formulation of the cited interaction problems is reworked to reflect the new capability 
of permitting curved boundary elements to represent the geometry and a higher-order functional behaviour 
of the unknown velocity potentials over that geometry. This is in direct contrast to the usual technique of 
using straight-line geometric panels and invariant behaviour of the required potentials over these simple 
panels. 

Applications to representative sections of floating ships and the fully submerged pontoon section of a 
semi-submersible are presented. Within these applications the results of the standard Frank close-fit 
technique, of linear panels and constant behaviour, are compared with different combinations of higher-order 
representations of the geometry and the determined velocity potentials. 

Conclusions regarding the advantages and limitations of the procedures developed are discussed. 
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INTRODUCTION 

The hydrodynamic problems formulated in the determination of the motions and loads on bodies 
at sea are often simplified by reducing them to a series of two-dimensional boundary value 
problems. Two-dimensional problems have also received attention in their own right without 
reference to global problems. Of the methods available for their solution, that involving the use 
of Green’s second identity and a fundamental fluid singularity appropriate to the interaction 
problem is often used. This approach lies within the broad group of techniques known as 
boundary element methods (BEM) which are finding increasing application in various engineering 
disciplines. 

In general the method ultimately involves the solution of an integral equation of the second 
kind. Because of its complexity, numerical methods have to be used except for simple geometries. 
Hess and Smith’ pioneered a three-dimensional numerical solution procedure of immense 
practical application, whereas Frank’ implemented the corresponding procedure for the case of 
two-dimensional water wave problems treated in this paper. Without going into too many details, 
the so-called Frank close-fit procedure consisted of approximating the two-dimensional cross 
section by means of a series of straight lines and assuming that the unknown function is constant 
over each of the straight lines. This paper outlines the formulation and implementation of an 
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improved procedure whereby it is possible to have curved segments approximating the 
cross-section and higher-order representations of the unknown function over the segments. The 
general stimulus for pursuing the study of this advanced method is the achievement of either 
an increased accuracy for a given number of elements or a reduction in the computational effort 
required for a given accuracy. All these benefits are of course to be measured relative to the 
standard implementation of the method. 

Having outlined the basic problem, the remainder of the paper is concerned with the 
development, implementation and application of the higher-order boundary element procedure. 

2. FLUID-STRUCTURE INTERACTION FORMULATION 

The motion of a vessel oscillating as a result of excitation by an incident wave system can be 
adequately modelled, within the limitations of a linearized analysis, through solution of the 
so-called radiation and diffraction problems. In the former set of problems one determines the 
wave systems and hence the resultant forces or moments acting on the vessel due to the harmonic 
motion of the structure in otherwise still water. The diffraction problem is concerned with the 
disturbance of the incident wave field due to the presence of the vessel considered fixed. In each 
class of problem we are determining the response to a harmonic disturbance and we therefore 
assume the unknown velocity potential @(x, y ,  z ,  t )  can be expressed as 

@(x, y, z ,  t )  = 4 ( x ,  Y, 4 exp ( - i 4 ,  

where o is the oscillation frequency. Assuming z is the positive forward direction along the 
longitudinal axis of the vessel, then the strip theory requires solutions of the unknown sets of 
velocity potentials 

(4‘(x, y)lz,fixed} and { 4oe(x, y)/z,fixed}, 

where the fixed value of zi corresponds to the position of the ith transverse section of interest 
and the superscript r and subscript D, denote the rth degree of freedom in the radiation problem 
and the wave direction 8 in the diffraction problem respectively. For beam waves only 
(8 = n/2,3n/2), the diffraction problem, like the radiation problem, is governed by the two- 
dimensional form of Laplace’s equation. For non-beam sea headings, the diffraction potential 
is assumed to have the same z dependence as the incident wave potential. This assumption 
reduces the 3D Laplace equation to Helmholtz’s equation as the governing equation for the 
diffraction problem. Clearly this ignores longitudinal interactions of the incident wave with the 
different transverse sections of the vessel and does not recognize the well known singularity 
problems associated with strip-theory-orientated diffraction ana ly~ i s .~  Here our aim is to simply 
investigate a new procedure of analysing the classical radiation and diffraction problems 
associated with strip theory formulations. In either case the Fredholm integral equation to solve 
can be determined using Green’s second identity, namely, 

and the governing equations 
V2@ = 0 everywhere in the fluid, 
( X z / 8 t 2 )  + g(d@/ay) = 0 on the free surface, y = 0, 
(a@,lan) = u, exp (- iot)  on the wetted surface, 
(&D/an) = 0 on the seabed, 
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Figure 1. Co-ordinates and domain definition 

together with the Sommerfeld radiation condition 

lim (d/dx f iv)(W, QD0) = 0, 
X - r + K  

where v = w2/g. Noting the time-harmonic behaviour of the fluid and application of the conditions 
on each part of the enclosing surface S presented in Figure 1 and made up of the free surface 
C,, the vessel’s wetted surface C,, the sea bed C, and two vertical control lines Ckm some 
distance from the vessel leads to the well-known integral equation 

That is, we shall mainly be concerned with the direct solution of the integral equation for the 
velocity potential itself. This is in contrast to the indirect BEM approach where the unknown 
is an auxiliary fictitious function invariably referred to as the source strength. 

In equation (1) p and q both define points on C, with the difference that p is a fixed point 
and q is the variable of integration. The angle a is equal to n when p is located on a smooth 
portion of C,. At a point of discontinuity on C,,a is the angle measured in radians, from the 
fluid side, between the two tangent vectors to C, at p.  The angle CI arises because on substituting 
t+b = G in Green’s identity, the velocity potential G(p, q) describing the flow due to a pulsating 
fluid singularity, initially violates the assumptions of the identity. Thus G(p, q), the so-called 
Green function, represents the velocity potential evaluated at p of a fluid singularity situated at 
q. For the 2D radiation and diffraction problems governed by Laplace’s equation, we have 

dk 
O‘ ek(Y+v)cos [k(x - [)I 

G(p,q) = l n r  - lnr’ + 2PV 

- 2x iev (~+~)cos  [v(x - ()I. 

For non-beam sea wave diffraction analysis the Green function assumes the form 
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In the above definitions the following notation has been assumed: 

P = ( X , Y ) ,  4 = ( 4 ,  rX 
R=J[ (x  - 4)2 + (a + y + y)'], 

r = JCCX - + (Y - r)212 r' = JCCX - 4)' + (Y + Y)21, 
v=w2/g, K = I V C O S ~ ~ ,  

K,[ ] is a modified Bessel function of the second kind of nth order, 0 is the wave heading and 
w is the wave frequency. 

In equation (1) +(q) represents the unknown velocity potential and u,(q) is a known function 
representing d+(q)/dn, over C,. The unit normal vector is directed into the fluid as indicated in 
Figure 1. 

3. SOLUTION O F  FREDHOLM INTEGRAL EQUATIONS 

The numerical solution of integral equations is a fairly well documented topic; see, for instance, 
Baker4 and Delves and Walsh.' Several methods are available, such as the use of direct quadrature 
rules, the use of the Rayleigh-Ritz and Galerkin methods or the use of the so-called expansion 
methods amongst others. Expansion methods, as their name suggests, represent the unknown as an 
expansion in terms of known base functions; that is, 

N 

6 = ,E a i f i ,  say. (3) 
a =  1 

The f ,  are the base functions and the a, are constants which now become the unknowns of the 
problem. These expansions may be defined locally or over the whole integration domain. One 
particular method of obtained the a, values is the collocation method. This consists of satisfying the 
integral equation, equation (l), at N selected points of C,. Thus N equations are obtained in the N 
unknowns which can be solved using the standard procedures of linear algebra. The collocation 
method is the approach used in this paper. 

3.1. A particular approach 

It can be easily seen that on substituting equation (3) into equation (l), the coefficients of the a, 
for any of the N equations will be the integrals of the basis functions f i  times the normal derivative 
of the Green function. These integrals are defined over C, which will invariably be of arbitrary 
form and without mathematical representation. Thus before trying to apply the method we must 
tackle the problem of evaluating the integrals of complicated functions over arbitrary contours. 
Because of the complexity of the Green function, numerical integration will inevitably have to be 
used. Another factor to be taken into account is that the normal vector to the contour is required as 
a function in the normal derivatives. All this indicates that some approximation of the contour C ,  
is required in order to make progress. An obvious approach would be to select a number of points 
on C, and fit a curve through them using well known techniques such as cubic and B splines. This 
approach has been implemented in the case of a simple Rankine source in an infinite (no free 
surface) domain by Okan and Umpleby.6 A second paper by these authors' is concerned with the 
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free surface effects for a steady translating 2 D  body. With these global curve-fitting schemes any 
degree of accuracy and smoothness can be achieved in the representation. Unfortunately these 
schemes are not trivial in terms of the computational effort regarding their implementation and 
their use in obtaining the required information for the integration procedure. Thus it was felt that 
initially a simpler approach was more desirable in approximating the contour C,. 

Without loss of generality we can divide the contour into any number of segments. Equation (1) 
would then become 

Instead of looking for a global approximation to C ,  we shall obtain local approximations within 
each of the N segments. The simplest approximation involves the use of the Lagrangian 
polynomials as pioneered in the finite element method (FEM). Thus each segment CWj will be 
represented in a parametric form by equations of the form 

where [ < ( q i ) , q ( q i ) ]  are the co-ordinates of the ith point in the segment used to support the 
approximation. The number of points required, n, will depend on the order of the approximation 
desired; e.g., n = 2 for a linear function, n = 3 for quadratic functions, etc. The functions N i ( t )  are the 
so-called shape functions in the jargon of FEM. They are simple polynomials in the variable t of 
degree 1,2  or 3 depending on whether n = 2,3  or 4. Details are presented in the Appendix in 
conjunction with the location of the points defining the approximation in the t domain. The 
selected shaped functions have the property that 

where tj is the t value corresponding to the point q j .  Suppose that the mapping of the jth segment is 
such that as t increases from - 1 to + 1 the segment is traversed with the fluid region on the left- 
hand side. Then it can be easily shown that the normal vector pointing into the fluid is given by 

where f ‘  and g’ denote derivatives with respect to t. If the direction of travel along the segment were 
defined in the opposite direction, then the sign of the normal would simply change. It also follows 
that the arc length can be written as 

Therefore by means of the representation defined by equation (5),  the integrals over the segments 
making up C, have been mapped to the [I - 1 , 1 ]  segment of the real t axis. This means that we can 
now apply Gaussian quadrature in a straightforward manner except for the singular cases 
discussed later. 

With this representation of the geometry it is obvious that no slope continuity can be ensured 
across neighbouring segments. Thus a jump in the normal unit vector exists at these points. This 
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poses no mathematical difficulty as functions with finite discontinuities or jumps have well defined 
integrals. In implementing the direct method of solution, the actual value of the normal at such 
intersection points is not required provided a suitable quadrature rule is chosen, such as Gaussian 
quadrature. Since the normal vector is part of the integrand, then each facet will have its own well 
defined normal in the neighbourhood of these points. 

Next, using equations (6) and (7) and the fact that 

alan = n.V and u, = n-[iu, + juJ, 

equation (4) can be rewritten as 

where p is a fixed point and the co-ordinates of q are given by equation (5).  In order to obtain a 
true set of simultaneous equations from equation (8), we now need to introduce the approximation 
for 4 over the segments. Here we follow the same technique used in the FEM and express the 
potential as 

m 

4 = 2 4 ( q k ) M k ( t ) ,  (9) 
k =  1 

where the Mk(t)  are the same shape functions defined in the Appendix for the representation of the 
geometry. The unknown 4 ( q k )  are the values of 4 at the points q k  dictated by the specification of rn 
over the segment. That is, the location of these points on the segment, as a function of t ,  is as for 
the geometric case. Here we have used m and k f k  instead of n and Ni to indicate that different orders 
of representation can be used for the geometry and the unknown function. The values of m 
permitted are the same as for n except that now we also have the choice of m = 1 to indicate a 
constant approximation of the dependant variable 4. 

Hess8 presented a different approach for the use of higher-order approximations in the solution 
of his two-dimensional aerodynamic boundary value problems. In the development of his method 
Hess comes to the conclusion that a mathematically consistant formulation requires the order of 
approximation for the unknown function to be one less than that of the geometry of a given 
segment. The authors have studied Hess's procedure in detail and find they are unable to fully agree 
with the criteria and arguments leading to the aforementioned conclusions. 

The Hess viewpoint on the relationship between the two orders of approximation is not shared 
by the wide FEM community, where isoparametric elements are commonly used. In fact Brebbia 
et argue that the order of approximation of the unknown must be at least the same as that 
of the geometry. This conclusion is based on the FEM argument that the approximation used 
in terms of the local co-ordinates ( t )  must be able to reproduce a complete polynomial, in the 
global co-ordinates of the problem, of the first degree at least. This is required because in FEM 
problems in general the unknown and its first derivatives are present under the integral sign, 
thus requiring a complete polynomial of order one to ensure convergence." 

In our particular case only the unknown itself appears under the integral sign, so that the above 
requirement of an isoparametric element appears rather restrictive. This view is supported by the 
extensive use and good results provided by the well tried linear-constant formulation, which under 
the above rules would be invalid! 

Hence substituting equation (9) in equation (8), the set of simultaneous equations is defined by 
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N r + i  

for i = 1 to M. The p i  are the M distinct points used to define the approximation of the velocity 
potential. Obviously when pi is a point at the intersection of two elements, then it will support the 
local approximation of 4 on both elements. Hence M = N for the case of constant approximation 
and A4 = N (rn - 1) + 1 for higher-order approximations. 

It must be noted that in equation (10) 4, G, u, and vy are all complex quantities, so that 
equation (10) is in fact a set of complex simultaneous equations. Once the relevant matrices have 
been set up, then the system can be solved in the traditional way. The required integrals are all 
evaluated numerically using Gaussian quadrature. 

For the diffraction boundary value problem, the velocity components are defined as 

U, = - a4,/ax and U, = -a4,py, 
where 4, is the incident wave velocity potential. For the radiation boundary value problem the x 
and y components of the velocity of a given point of C, when the section performs unit amplitude 
oscillations in each of the degrees of freedom are 

u x =  -110, u, = 0 for sway, 
v, = 0, u y =  - i o  for heave, 
u, = io[gj(t) - y e ] ,  uy = - io[fj(t) - x,] for roll, 

where (x,,yc) are the co-ordinates of the centre of rotation. 

3.2. The  hydrodynamic coe&cients 

Of interest in practical calculations are the added mass and fluid damping coefficients and the 
exciting forces and moments. The sectional added mass and fluid damping coefficients are defined 
as 

with r ,  s = 2,3  and 4 denoting sway, heave and roll respectively. The subscripts R and I denote the 
real and imaginary components of the complex velocity potential and the direction cosines ns are 
defined as 

n2 - n,, n3 - ny and n4 - n,(x - x,) - n,(y - y e ) .  

Using the indicated subdivision of C, and the approximation for 4 over each segment, the 
expressions for the coefficients can be re-expressed as 

r, s = 2,3,4, 

brs= - f  j= 1 [:: ( k =  2 1 b;(4*)Mk(t))flsjdf, 1 
assuming unit displacement of the section in each mode. The corresponding exciting forces and 
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moments are given by the expression 

for s = 2,3,4, where 4D and 
respectively. In each case the n, values on a particular facet j are given by 

are the complex diffraction and incident wave velocity potentials 

4. IMPLEMENTATION OF THE PROCEDURE 

In the previous section of this paper we derived equation (10). Application of this equation at each 
of the selected points where 4(qk) is to be determined leads to a set of complex linear simultaneous 
equations for the unknowns 4(q). We can write these equations in matrix form as 

(A+iB)($R+i$,)=C+iD, 

where A and B are M x M matrices and $R,  C and D are M x 1 column vectors, all being real. 
Obviously for each of the radiation and diffraction problems defined earlier there will correspond 
different C and D vectors, while A and B wit1 be the same for all problems of specified frequency. 
Thus in practice C and D are M x nprob real matrices, where nprob is the number of problems 
considered together at  any one time. 

The elements of the matrices A,B, C and D are made up by the values of the integrals indicated in 
equation (10) over the relevant facets. Recalling that the Green function G is of the form G = 
G R  + iG,, it follows that the elements of A will be a linear combination of terms of the form 

and the elements of B a combination of terms of the form 

Since the velocity components ox and uy are complex quantities of the form 

u = uR + iu,, 

then the elements of the C column vector are of the form 
+ 1  [ CGR(pi, q)'Rj - GI(pi, q)oljl dt  

j = 1  - 1  

and those of the D column vector are of the form 
+ 1  f CGR(pi?q)ulj + q ) v R j l  dt ,  

j = 1  - 1  

where 

and 
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Thus it can be seen that one of the most important and time-consuming aspects of the method is the 
accurate evaluation of these integrals. The imaginary part of the Green Function, G , ,  is a well 
behaved function which is nowhere singular. Thus the evaluation of the elements of the B matrix 
can be undertaken using straightforward numerical integration in all cases. The same applies to the 
integration of those parts involving GI for the elements of the C and D vectors. 

The real part of the Green function and its derivatives exhibit a singular behaviour when the field 
point p and the integration variable point q coincide. The singular behaviour of the Green function 
arises from the presence of the lnr terms and their derivatives. The lnr singularities are handled 
using the Lean and Wexler '' quadrature procedure, whereas the singularities associated with the 
derivatives can be shown to be non-singular in the limit and hence integrated using any standard 
numerical integration procedure which does not explicitly involve the singular point. 

4.1. Numerical integration 

All integrals which are free of any form of singularity are evaluated using Gauss-Legendre 
quadrature, whose weights and ordinates are given by Stroud and Secrest.' This quadrature 
rule is exact for polynomials of degree d 2n - 1, where n is the number of ordinates. 

In practice the accuracy of the integral is controlled by evaluating the integral with an increasing 
number of ordinates. In fact, if we denote the value of the integral evaluated with n ordinates by I , ,  
then for the calculations presented in this paper the iterative process is stopped when 

I I 
That is, when the relative change is less than or equal to 0.1%. With Gaussian quadrature this 
process is rather wasteful since the ordinates for any two values of n are not the same. Thus a 
substantial number of integrand evaluations go unused in the final result. 

An attempt to alleviate this situation was made by Patterson,13 who developed a Gaussian- 
based rule which enabled the number of ordinates to be increased by n + 1 values while retaining 
the integrand evaluation for previously used ordinate values. The rule commences with the three- 
point Gauss-Legendre rule, and further weights and ordinates have been evaluated for 
n = 7,15,31,63,127 and 225. One slight disadvantage is that while the ordinates from the previous 
n value can be used again, new weights must be applied to the function every time. This clearly 
requires the storage of all previous integrand evaluations. 

In practice it was found that the total number of integrand evaluations, using the same relative 
error criteria defined above, was in most cases larger than using the standard Gauss-Legendre 
scheme. This is as a result of two facts. In the first place, as the iteration proceeds the number of 
ordinates increases quite rapidly. Secondly, because of the substantial jump in the number of 
ordinatesfrom one iteration to the next, the relative error is bound to be substantial compared with 
that obtained from a more moderate and steady increase in the number of ordinates. These two 
factors conspire to make the iteration reach quite high values of n before the relative difference 
criteria is satisfied, thus negating any benefit accrued from not throwing away any integrand 
evaluation. 

5. ASSESSMENT OF THE HOBE METHOD 

The performance of the HOBE method can be assessed chiefly in two ways: on the grounds of 
accuracy of the solution or on the grounds of computer central processor unit (CPU) time. The 
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main impetus for researching higher-order boundary element formulations is the achievement of 
greater accuracy for a given number of facets or a reduction in the CPU time for a given accuracy 
with fewer facets, all assessments being made in relation to the standard linear-constant procedure. 

The question of assessment in terms of accuracy is rather easy to establish, since we can use the 
standard method with a very fine discretization as a basis for comparison. The comparison can be 
carried out at two levels. We can compare the distribution of the velocity potential over the contour 
of the cross-section or we can compare the value of the relevant hydrodynamic coeficients. 
Naturally the former comparison is the more stringent of the two, since the integral nature of the 
evaluation process for the coefficients will tend to reduce considerably any discrepancies in the 
distribution of the potential over the section. 

The question of CPU time is rather more subtle as this involves such aspects as the efficient 
implementation of the method in the form of a computer program and the selection of suitable 
numerical algorithms. Thus, inevitably, this involves the ability and experience of the programmer. 
Hence this is a rather subjective quantity even if the comparison is carried out in the same 
computational environment. 

In general it is possible to obtain the same accuracy as the base method with a reduced number of 
higher-order facets. Since this reduces the order of the linear algebraic problem, it is obvious that 
substantial savings in solution CPU time will accrue, because this time varies as M 3 .  That is, 
halving the number of collocation points A4 results in the time being reduced by a factor of eight. 
However, because of the greater complexity of the formulation and the required use of numerical 
integration, the CPU time required to formulate the linear algebraic problem will increase. It is 
when we consider the set-up time in particular that the HOBE exhibits an unfavourable handicap 
when compared with the standard linear-constant method. 

Let us digress slightly and consider some of the details of the practical implementation of the 
standard method. In spite of having assumed a constant value of the unknown over the linear facet, 
we still have to evaluate the integrals of the normal derivative of the Green function for matrices A 
and B, and of the Green function times the normal velocities for the C and D matrices. For 
problems governed by Laplace’s equation, integrals of the Green function and its normal 
derivative can be evaluated analytically over linear facets by using complex variables and 
integration in the complex plane.2 For the integrals of the C and D matrices this requires the 
further assumption that the normal velocity is constant over the facet and can therefore be taken 
outside the integral sign. 

Analytic integration results in rather complicated expressions which are somewhat time- 
consuming to evaluate. For this reason it is far more common in practical programs to use the mid- 
point rule. This means that the integrals are approximated by the product of the value of the 
integrand at the facet mid-point and facet length. This approach is quite satisfactory from a 
practical engineering point of view provided the number of facets is not too low. In any case the 
main advantage is that a substantial reduction of the set-up time is achieved. This follows because 
of the much simpler expressions to be evaluated and because the reciprocity properties of the Green 
function can be exploited so as to halve the number of quantities to be evaluated. This is true even 
when symmetry properties are taken into account. 

To illustrate this point let us consider a typical problem where there is no symmetry of the 
solution. In this case the elements of the matrices, A and B in particular, represent the influence of a 
given facet at a given collocation point. For instance, the element A(i ,  j) of A represents the 
influence of the jth facet on the ith collocation point, which is situated somewhere on the ith facet. 
The element A& i) has a similar meaning. If we denote the collocation points associated with the ith 
andjth facet by p i  and p j ,  then we know that G ( p i , p j )  = G(p , ,p i ) .  When considering the normal 
derivative dG/an,, things are not as straightforward. But it can be easily shown that dG/ (p , ,  pi)/&,, 
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and aG(pj,pi)/an,, can be obtained from a single evaluation of aG/a( and aG/ay. Thus for a 
problem with N facets we only need to evaluate the Green function and its derivatives a total of 
N ( N  + 1)/2 times. 

If the integrals are to be evaluated analytically or otherwise, none of the above properties of the 
Green function can be used, even for the traditional linear-constant elements. Hence by actually 
attempting to evaluate the integrals, the set-up time increases by a factor of at least two. If in 
addition we use higher-order elements where there are more integrals with more complicated 
integrands, the time will increase quite considerably. For these reasons any time comparison of the 
HOBE method with a standard method using the mid-point rule gives the latter a rather unfair 
advantage. This means that only an extremely efficient computer program of the HOBE method 
will have a good chance of competing favourably against the standard methods as far as CPU time 
is concerned. The above arguments should be borne in mind when studying the time comparisons 
to be presented. 

6. APPLICATION OF THE HOBE METHOD 

The availability of curved facets in the HOBE method should be exploited first of all to achieve the 
best possible geometric approximation of the section. In spite of the unavoidable slope 
discontinuities at facet boundaries, this can be achieved by judicious distribution of facets so as to 
maximize the curvature properties of the facets. For instance, a quadratic facet cannot handle 
changes in the sign of the curvature within the facet so that the representation will only be an arc 
passing through the three points defining the facet. On the other hand, a cubic facet can have a 
point of inflection within the facet and can therefore be used to cover larger distances. In this way 
the extent of slope discontinuity can be reduced quite considerably. 

A good representation of the section is important since the boundary conditions of the problems 
of interest are heavily dependent on the geometric properties of the section. This is particularly 
important for the direct method of solution where the boundary conditions appear in the integrand 
of the right-hand side of the integral equation. Thus the number of facets used in the discretization 
should be controlled by the need for good geometric representation. It should be noted that unlike 
the standard case, the number of equations and unknowns is given by the total number of 
collocation points M and not the number of facets N .  The value of M ,  for a given number of facets, 
can be controlled by the order of approximation selected for the unknown on every facet. In any 
case the number of facets required is substantially less with the HOBE method than with the 
standard model. 

Thus after having fixed the number of facets according to the criteria described above, a suitable 
order of approximation for the unknown function has to be selected. This selection is a rather 
subjective matter and must rely to a large extent on experience gained from extensive usage of the 
HOBE method. It will obviously depend on whether the motivation for the application is time or 
accuracy. If a time reduction is being sought, then the order of approximation should be such as to 
keep the number of collocation points low without overstretching the approximation of the 
velocity potential. It seems that acceptable engineering results will be obtained provided the 
number of collocation points does not fall too far below half the number that would be normally 
used for the standard method. More specific points in this respect will be brought out when 
discussing the results for each of the sections analysed. 

6.1. Spec@ 2 0  sections analysed 

Application of the HOBE method is illustrated through analysis of two ship aft sections and the 
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transverse section through the submerged pontoons of a semi-submersible. Each aft section 
selected exhibits a substantial degree of curvature, whereas the pontoons are of rectangular cross- 
section with differing corner radii. The geometric discretization of each ship section, denoted by 
the letters A and B, is shown in Figures 2 and 3. The figures indicate the fit achieved by the 
discretization and also include the normal vector at  selected points of the facet to indicate the 
degree of smoothness achieved at  the junction of two neighbouring facets. For both sections five 
cubic and seven quadratic facets have been used in Figures 2(a), 3(a) and Figures 2(b), 3(b) 
respectively. 

The cross-section of each of the semi-submersible pontoons has a depth of %Om and a width of 
16.0m, with the pontoons’ centre lines being 60.94 m apart. Pontoon corner radii of 1.0 m and 4.0m 
will be considered with 16 and 6 quadratic facets respectively as shown in Figures 4(a) and 4(b). 

6.2. Specijic problems investigated 

Each of the 2D sections described has been analysed to solve the radiation problems of sway, 
heave and roll and the diffraction problem for various wave headings and wave frequencies. Since 
the results for the diffraction analysis for headings different to beam sea will not add or subtract 
anything from our conclusions, only results for beam seas are presented in this paper. 

Figure 2(a). Piece-wise cubic approximation with 5 facets (section A); beam = 13.20m, draught = 4.78 m 

Figure 2(b). Piece-wise quadratic approximation with 7 facets (section A); beam = 13,20111, draught = 4.78 rn 
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Figure 3(a). Piece-wise cubic approximation with 5 facets (section B); beam = 11.20111, draught = 9.82111 

Figure 3(b). Piece-wise quadratic approximation with 7 facets (section B); beam = 11.20m, draught = 9.82111 

Figure 4(a). Piece-wise quadratic approximation with 16 facets (semi-submersible pontoons section, survival 
draught); corner radius = 1.0m 
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Figure 4(b). Piece-wise quadratic approximation with 6 facets (semi-submersible pontoons section, survival draught); 
corner radius = 443m 

6.3. Results presented 

The results obtained from the analysis described in Section 6.2 are as follows: 

(a) plots of added mass coefficients, fluid damping coefficients and amplitude and phase of 
exciting forcejmoments over range of cri2B/2g values from 0.1 to 6.0 for the ship sections, and 
over a range of wave periods from 2 to 20 s for the semi-submersible pontoon section; 

(b) plots indicating the variation over the contour of the in-phase and out-of-phase components 
of the velocity potentials for wZB/2g values of 0.1,1.0,2.0,4.0 and 6.0; 

(c) table showing the CPU time comparisons between the different HOBE models used and the 
standard Frank close-fit method. 

For obvious reasons of space, only those results which show the more salient features of the method 
or serve to highlight particular points will actually be presented in the paper. 

In the results presented, the velocity potentials are not non-dimensionalized whereas the reactive 
hydrodynamic coefficients and roll excitation forces are non-dimensionalized by division by the 
following indicated factors: 

a 2 2 3  a 3 3  by PB2, 
h 2 2 ,  6 3 3  by PB21J(B/d, 
a44 by pB4, 
b44 by PB"IJ(BId 
f 4  by pgB2a, 

where B is the waterline beam of the section for sections A and B and corresponds to the beam of 
the semi-submersible measured to the outer sides of the pontoons, and a is the wave amplitude. 

6.4. Discussion of results 

6.4.1. Sectional hydrodynamic coeficients. Because of the range of frequencies covered by the 
analysis for the ship sections, the first irregular frequencies are included within this range. In 
general, the results indicate that the HOBE results are affected by the irregular frequencies to a 
greater extent than is the case for the Frank close-fit method. This is particularly the case for 
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discretizations with a low order of approximation for the potential, which indicates that the 
irregular frequencies problem is aggravated by the low number of collocation points. 

Since the semi-submersible pontoon section is totally submerged, no irregular frequencies exist, 
but the interference effects between the two pontoons can be clearly seen over the range of periods 
from 5 to 10 s. The distance between the pontoon centre lines is 60.94 m, which for the case of 
infinite depth corresponds to a wave of 6.25 s period. Therefore the highly oscillatory behaviour of 
the hydrodynamic coefficients can almost certainly be attributed to the presence of resonance 
phenomena. 

For section A we present the reactive hydrodynamic coefficients for sway, heave and roll in 
Figures 5,6 and 7 respectively and the roll exciting moment in Figure 8. The agreement between all 
HOBE discretizations and the standard Frank close-fit method up to the first irregular frequency is 
very good. Beyond the first irregular frequency only the discretizations with quadratic and cubic 
approximations for the potential exhibit a reasonable performance, though as already indicated 
they are more severely affected than the Frank close-fit results. The discretizations with a linear 
approximation perform rather badly throughout the frequency range except at very low 
frequencies. 

For section B we only present the reactive coefficients and exciting moment for roll in Figures 9 
and 10 respectively, since the results for the other coefficients show the same trends as in the case of 
section A. In the case of the roll degree of freedom, it can be seen that only HOBE discretizations 
with a cubic approximation of the potential give results which are close to those from the Frank 
close-fit method. This abnormal behaviour for the roll results can probably be attributed to the T 
shape of the section (see Figure 3), which would make roll-related quantities quite sensitive to the 
discretization used. 

For the semi-submersible pontoon section, only the sway reactive coefficients and the roll 
exciting moment are presented, in Figures 1 1 and 12 respectively for a corner radius of 1.0 m and in 
Figures 13 and 14 respectively for a corner radius of 4.0 m. The HOBE results have been compared 
with those from the standard linear-constant approach based on analytic integration, with both a 
very fine discretization and a discretization consistent with that used for ‘practical’ calculations. 
For a corner radius of 1.0 m all the results are very close throughout the period range. For a corner 
radius of 4.0 m the HOBE results with a linear approximation of the potential show substantial 
discrepancies. In this case it should be noted that the number of facets in the HOBE discretization 
is just over a quarter of that used for the standard method, whereas for the case of a 1.0m corner 
radius the number in the HOBE method was just under a half of that used in the standard 
calculation. This difference arises because the greater curvature of the section when the corner 
radius is 4.0 m allows the use of fewer and longer facets. When the corner radius is only 1.0 m, the 
quadratic facets covering the curved region are rather short and as a result more facets ofmoderate 
length over the straight portions of the section are required. Therefore a discretization with a linear 
approximation of the potential in the case of a corner radius of 4.0 m is much more coarse than the 
equivalent discretization in the case of corner radius of 1.0m. 

6.4.2. Velocity potential distribution. Plots of selected velocity potentials against the angular 
polar co-ordinates of points on the contour are presented in Figures 15-18 for the ship sections 
only. In these plots the symbols indicate the value of the potential at collocation points as 
determined by the calculation procedure. 

The velocity potential curves are obtained by determining the value of the potential at ten points 
which are equidistant in the ‘t’ domain; then one of the curve-fitting routines provided by an 
available graphics package is used to draw a curve passing through these points. 

For section A we present the roll and diffraction velocity potential distributions in Figures 15 
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and 16 respectively for an o2 B/2g value of 1.0. As can be seen from the graphs, all HOBE models, 
except those with a linear approximation of the potential, follow very closely the results of the 
Frank close-fit method using a fine discretization. The same is also true for the sway and heave 
velocity potentials, which are not shown. For higher values of w2B/2g the agreement tends to 
deteriorate somewhat, particularly with a linear approximation of the potential. This is almost 
certainly attributable to the influence of the irregular frequencies, as indicated by the sectional 
hydrodynamic coefficient results presented in Section 6.4.1. The results for section B, given in 
Figures 17 and 18, show the same trends observed in the results for section A. 

6.4.3. CPU time comparisons. Comparisons of the CPU time required to set up and solve the 
linear simultaneous equations for the various discretizations used and for several w 2  B/2g and wave 
period values are presented in Tables I-IV. The CPU times enclosed in parentheses represent the 
addition of the set-up and solution times. This is probably the more relevant quantity as it indicates 
whether any overall savings result from using HOBE formulations. 

The time comparisons for sections A and B are presented in Tables I and I1 respectively. The first 
thing to be noted is how the set-up time more than doubles when using analytic integration instead 
of the mid-point rule in the standard Frank close-fit method. This clearly illustrates the point made 
in Section 5 regarding the assessment of time comparisons between the HOBE formulations and 
the standard method. Another point to be noted is that for the standard Frank close-fit method, 
with a practical number of facets, the set-up and solution time are of the same order of magnitude. 
Therefore, when using analytic integration, the set-up time will be approximately twice the solution 
time. 

It is a well known fact that the set-up time varies as M 2  and the solution time as M 3 ,  where M is 

Table I. CPU times (milliseconds) section A 

Equations set-up time 
CO’ B/2g = 0.1 1 ,o 2.0 4.0 6.0 Solution 

time 

Frank 22F 
standard 

Frank 22F 
Analytic integration 

7Q-CB 

7Q-Q 

7Q-L 

5CB-CB 

5CB-Q 

5CB-L 

79 54 
(133) 

(245) 

(715) 

(415) 
183 4 

(187) 
457 22 

(479) 
264 9 

(273) 
136 2 

(138) 

191 54 

661 54 

396 19 

Value in parentheses = set-up + solution time. 
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Table 11. CPU times (milliseconds) section B 

Equations set-up time 
w2BJ2g = 0.1 1 .o 2.0 4.0 6.0 Solution 

time 

Frank 20F 32 43 52 66 77 42 
Standard (74) (85) (94) (108) (119) 

Frank 20F 88 110 128 158 183 42 
Analytic integration (130) (152) (170) (200) (225) 

(372) (469) (571) (753) (882) 

(209) (257) (313) (454) (560) 

7Q-CB 318 415 517 699 828 54 

7Q-Q 190 238 294 435 541 19 

7Q-L 81 117 143 192 255 4 
(85) (121) (147) (196) (259) 

5CB-CB 220 298 358 503 584 23 
(243) (321) (381) (526) (607) 

(144) (196) (238) (310) (386) 

(63) (82) (107) (146) (194) 

5CB-Q 135 187 229 301 377 9 

5CB-L 61 80 105 144 192 2 

Value in parentheses = set-up + solution time. 

the number of collocation points. Thus by reducing the total number of collocation points through 
using HOBE formulations, substantial time reductions in the solution of the equations will result. 
Because of the iterative nature of the integration procedure currently adopted in the HOBE 
program, the set-up time of the equations does not experience a similar reduction. This can be 
clearly seen in Tables I and 11, where the set-up time for the HOBE formulations is substantially 
higher than that for the standard Frank close-fit method with analytic integration. An exception to 
this is the case of HOBE formulations with a linear approximation of the potential, where the times 
are comparable. It is also noticeable that the set-up time increases more rapidly with frequency for 
HOBE formulations than is the case for the Frank close-fit method. 

Considering the total times, shown in parentheses, it can be seen that only the HOBE 
formulations with a linear approximation of the potential show competitive times. In some cases 
they even out perform the Frank close-fit method using the mid-point rule. Unfortunately, as 
indicated in Sections 6.4.1 and 6.4.2, these HOBE formulations also produce results of poor 
accuracy. All other HOBE formulations which produce practical results have total times which are 
in general greater than the total time for the Frank close-fit method using analytic integration. 

The corresponding CPU time comparisons for the semi-submersible pontoon sections are 
shown in Tables I11 and IV for corner radii of 1.0 m and 4.0 m respectively. As can be seen, the same 
remarks made for sections A and B also apply in this case. 

Finally, it should be noted that the calculations for the semi-submersible pontoon section were 
performed on an IBM 370/168 8 megabyte computer and those for sections A and B on an Amdahl 
5860 40megabyte computer. This explains the difference in the order of magnitude exhibited by the 
times in Tables I-IV. 
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Table 111. CPU times (milliseconds) for semi-submersible pontoon section with 
corner radius = 1.0 m 

Wave 
period 

Equations set-up time 
2 6 10 15 20 Solution 

time 
~~ 

Frank 56F 4505 6534 4810 4245 3957 3494 
Analytic inegration (7999) (10028) (8304) (7739) (7451) 

32Q-Q 21185 26682 18136 14669 14170 5140 
(26325) (31822) (23276) (19809) (19310) 

32Q-L 9989 10666 7141 6238 5614 705 
(10694) (11371) (7846) (6943) (6319) 

Values in parentheses = set-up + solution time. 

Table IV. CPU times (milliseconds) for semi-submersible pontoon section with 
corner radius = 4-0 m 

Equations set-up time 
Wave 2 6 10 15 20 Solution 
period time 

Frank 40F 2323 3373 2508 2189 2044 1330 
Analytic integration (3653) (4703) (3838) (3519) (3374) 

12Q-Q 5952 4205 3150 2801 2686 314 
(6266) (4519) (3464) (3115) (3000) 

(3084) (2126) (1604) (1368) (1257) 
12Q-L 3035 2077 1555 1319 1208 49 

value in parentheses = set-up +solution time. 

7. CONCLUSIONS AND FINAL COMMENTS 

The results presented are generally encouraging so far as the latent potential of the higher-order 
formulations is concerned. A fuller benefit would ideally require a significant reduction in the cost 
of the method as measured by CPU time. On the other hand, the number of collocation points used 
in 2D problems is generally so small that it is almost an impractical demand for the savings in 
solution time to exceed the increase in numerical calculation and program management costs when 
fully integrating the complex Green function and associated derivatives over the facets, including 
the full variation of the boundary conditions over the elements and permitting dial-up choice of 
order of function for geometry and velocity potential representation. However, some improvements 
could be made in the areas of numerical quadrature provided implementable and robust rules for 
automatic selection of domain subdivision and the correct order of quadrature approximation 
could be determined to provide evaluations of guaranteed maximum numerical error. From the 
point of view of the results produced, the method has shown that it is quite capable of producing the 
same accuracy with substantially less facets and/or collocation points. The applications 
undertaken suggest that the number of facets selected and their geometric description should be 
determined by the requirements of closely approximating the geometry of the section. The order of 
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approximation for the unknown velocity potential can be selected with a view to halving the 
number of collocation points used in the standard method. Obviously this choice is aimed at 
achieving a reduction in time for a given level of accuracy of the hydrodynamic coefficients. If the 
main concern of the analysis is the detailed fluid pressure over the section, then more facets with 
higher-order formulations should be used irrespective of the time expenditure. 

One particular aspect which does require further expert treatment is the automatic selection of 
appropriate numerical integration. The present method of iterative Gaussian integration is 
somewhat wasteful in terms of integrand evaluation. As remarked earlier, some means of 
predicting the number of points to be used or where to start the iteration as a function of the source 
point, field point and facet attributes would considerably reduce the set-up time. 

The mixing of facets with different orders of approximation for the geometry or the unknown 
velocity potential is something that could be tried to improve the flexibility of the method. 
However, the associated increase in the number of possible discretization parameters for a given 
section might create confusion for inexperienced users. 

The HOBE method presented provides continuous solutions over the wetted surface of the 
structure. This can be advantageous when interfacing with structural analyses when discretizations 
suitable for hydrodynamic analyses provide hydrodynamic pressure loadings at points other than 
the nodes of the structural representation of the FE analysis, say. We can now avoid troublesome 
interpolation of the hydrodynamic pressures based on non-continuous solutions. 

Some work on the 3D HOBE procedure has been undertaken and here the quadrature problems 
are compounded because of the need to evaluate surface integrals. However, the fact that the 
problems are one or two orders of magnitude greater in terms of the algebraic problems solved 
does mean that the solution time reduction will be significantly larger and therefore there is greater 
potential for overall time savings from the differentials of set-up and solution times. 
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APPENDIX. 2D SHAPE FUNCTIONS AND DERIVATIVES 

Shape function definition Shape ,function derivatives 

Constant 

N , ( t )  = 1 

t ,  = o  
Linear 

N , ( t )=4(1  - t )  

N2(t)  = +( 1 + t )  

t ,  = - 1, t ,  = 1 

N ;  (t) = 0 

N ; ( t ) =  -3 
N i ( t )  = ++ 

Quadratic 

N , ( t )  = $t(t  - 1) N',(t)  = t - +  
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N 2 ( t )  = (1 - t)(l + t )  

N 3 ( t )  =+t(t + 1) 

t ,  = - 1, t2 =o, t ,  = 1 

N ,  ( t )  = &(t - l)(t2 - $) 

N,(t)= -+g(t-$)( l  - t 2 )  

N 3 ( t )  = $(t + +)(1 - t 2 )  

N 4 ( t )  = &(t + l ) ( t 2  - 6) 
t l = - l ,  t 2 = - I  39 t 3 - 3 9  - 1  t 4 -  - 1  

N ; ( t )  = - 2t 

N;( t )  = t + + 
Cubic 

N ; ( t )  = - &[t(3t - 2) - $1 

N\(t) = -E[l - t(3t -91 

N;( t )  =G[l - t ( 3 t + 3 ) ]  

Nk( t )  = &[t(3t  - 2)  + $1 
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